Frequency Division Multiplexing

- FDM
- Useful bandwidth of medium exceeds required bandwidth of channel
- Each signal is modulated to a different carrier frequency
- Carrier frequencies separated so signals do not overlap (guard bands)
- e.g. broadcast radio
- Channel allocated even if no data

FDM System

FDM of Three Voiceband Signals
Analog Carrier Systems
- AT&T (USA)
- Hierarchy of FDM schemes
 - Group
 - 12 voice channels (4kHz each) = 48kHz
 - Range 60kHz to 108kHz
 - Supergroup
 - 60 channel
 - FDM of 5 group signals on carriers between 420kHz and 612 kHz
 - Mastergroup
 - 10 supergroups

Wavelength Division Multiplexing
- Multiple beams of light at different frequency
- Carried by optical fiber
- A form of FDM
- Each color of light (wavelength) carries separate data channel
 - 1997 Bell Labs
 - 100 beams
 - Each at 10 Gbps
 - Giving 1 terabit per second (Tbps)
 - Commercial systems of 160 channels of 10 Gbps now available
 - Lab systems (Alcatel) 256 channels at 39.8 Gbps each
 - 10.1 Tbps
 - Over 100km

WDM Operation
- Same general architecture as other FDM
- Number of sources generating laser beams at different frequencies
- Multiplexer consolidates sources for transmission over single fiber
- Optical amplifiers amplify all wavelengths
 - Typically tens of km apart
- Demux separates channels at the destination
- Mostly 1550nm wavelength range
- Was 200MHz per channel
- Now 50GHz

Dense Wavelength Division Multiplexing
- DWDM
 - No official or standard definition
 - Implies more channels more closely spaced than WDM
 - 200GHz or less

Synchronous Time Division Multiplexing
- Data rate of medium exceeds data rate of digital signal to be transmitted
- Multiple digital signals interleaved in time
- May be at bit level of blocks
- Time slots preassigned to sources and fixed
- Time slots allocated even if no data
- Time slots do not have to be evenly distributed amongst sources

Time Division Multiplexing

TDM System

- No headers and trailers
- Data link control protocols not needed
- Flow control
 - Data rate of multiplexed line is fixed
 - If one channel receiver can not receive data, the others must carry on
 - The corresponding source must be quenched
 - This leaves empty slots
- Error control
 - Errors are detected and handled by individual channel systems

Data Link Control on TDM

- No flag or SYNC characters bracketing TDM frames
- Must provide synchronizing mechanism
- Added digit framing
 - One control bit added to each TDM frame
 - Looks like another channel - “control channel”
 - Identifiable bit pattern used on control channel
 - e.g. alternating 01010101…unlikely on a data channel
 - Can compare incoming bit patterns on each channel with sync pattern

Pulse Stuffing

- Problem - Synchronizing data sources
- Clocks in different sources drifting
- Data rates from different sources not related by simple rational number
- Solution - Pulse Stuffing
 - Outgoing data rate (excluding framing bits) higher than sum of incoming rates
 - Stuff extra dummy bits or pulses into each incoming signal until it matches local clock
 - Stuffed pulses inserted at fixed locations in frame and removed at demultiplexer

TDM of Analog and Digital Sources

- Problem - Synchronizing data sources
- Clocks in different sources drifting
- Data rates from different sources not related by simple rational number
- Solution - Pulse Stuffing
 - Outgoing data rate (excluding framing bits) higher than sum of incoming rates
 - Stuff extra dummy bits or pulses into each incoming signal until it matches local clock
 - Stuffed pulses inserted at fixed locations in frame and removed at demultiplexer
Digital Carrier Systems

- Hierarchy of TDM
- USA/Canada/Japan use one system
- ITU-T use a similar (but different) system
- US system based on DS-1 format
- Multiplexes 24 channels
- Each frame has 8 bits per channel plus one framing bit
- 193 bits per frame

Digital Carrier Systems (2)

- For voice each channel contains one word of digitized data (PCM, 8000 samples per sec)
 - Data rate $8000 \times 193 = 1.544\text{Mbps}$
 - Five out of six frames have 8 bit PCM samples
 - Sixth frame is 7 bit PCM word plus signaling bit
 - Signaling bits form stream for each channel containing control and routing info
- Same format for digital data
 - 23 channels of data
 - 7 bits per frame plus indicator bit for data or systems control
 - 24th channel is sync

Mixed Data

- DS-1 can carry mixed voice and data signals
- 24 channels used
- No sync byte
- Can also interleave DS-1 channels
 - DS-2 is four DS-1 giving 6.312Mbps

DS-1 Transmission Format

- 2.048Mbps
- Carry DS-3 or group of lower rate signals (DS1 DS1C DS2) plus ITU-T rates (e.g. 2.048Mbps)
- Multiple STS-1 combined into STS-N signal
- ITU-T lowest rate is 155.52Mbps (STM-1)

SONET/SDH

- Synchronous Optical Network (ANSI)
- Synchronous Digital Hierarchy (ITU-T)
- Compatible
- Signal Hierarchy
 - Synchronous Transport Signal level 1 (STS-1) or Optical Carrier level 1 (OC-1)
 - 155.52Mbps
 - Carry DS-3 or group of lower rate signals (DS1 DS1C DS2) plus ITU-T rates (e.g. 2.048Mbps)
 - Multiple STS-1 combined into STS-N signal
 - ITU-T lowest rate is 155.52Mbps (STM-1)
SONET STS-1 Overhead Octets

<table>
<thead>
<tr>
<th>Section Overhead</th>
<th>Line Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Framing A1</td>
<td>Framing A2</td>
</tr>
<tr>
<td>Bits B1</td>
<td>ODUw B1</td>
</tr>
<tr>
<td>DataCon D1</td>
<td>DataCon D2</td>
</tr>
<tr>
<td>B2</td>
<td>K1</td>
</tr>
<tr>
<td>R1</td>
<td>H2</td>
</tr>
<tr>
<td>ROP-B</td>
<td>APS-B</td>
</tr>
<tr>
<td>Buffer Z1</td>
<td>Z2</td>
</tr>
</tbody>
</table>

(a) Transport Overhead

(b) Path Overhead

Statistical TDM

- In Synchronous TDM many slots are wasted
- Statistical TDM allocates time slots dynamically based on demand
- Multiplexer scans input lines and collects data until frame full
- Data rate on line lower than aggregate rates of input lines

Statistical TDM Frame Formats

- Output data rate less than aggregate input rates
- May cause problems during peak periods
 - Buffer inputs
 - Keep buffer size to minimum to reduce delay

Performance

Cable Modem Outline

- Two channels from cable TV provider dedicated to data transfer
 - One in each direction
- Each channel shared by number of subscribers
 - Scheme needed to allocate capacity
 - Statistical TDM
Cable Modem Operation

- **Downstream**
 - Cable scheduler delivers data in small packets
 - If more than one subscriber active, each gets fraction of downstream capacity
 - May get 500kbps to 1.5Mbps
 - Also used to allocate upstream time slots to subscribers
- **Upstream**
 - User requests timeslots on shared upstream channel
 - Dedicated slots for this
 - Headend scheduler sends back assignment of future time slots to subscriber

Cable Modem Scheme

Asymmetrical Digital Subscriber Line

- **ADSL**
- Link between subscriber and network
 - Local loop
- Uses currently installed twisted pair cable
 - Can carry broader spectrum
 - 1 MHz or more

ADSL Design

- Asymmetric
 - Greater capacity downstream than upstream
- Frequency division multiplexing
 - Lowest 25kHz for voice
 - Plain old telephone service (POTS)
 - Use echo cancellation or FDM to give two bands
 - Use FDM within bands
- Range 5.5km

ADSL Channel Configuration

- **Discrete Multitone**
 - DMT
 - Multiple carrier signals at different frequencies
 - Some bits on each channel
 - 4kHz subchannels
 - Send test signal and use subchannels with better signal to noise ratio
 - 256 downstream subchannels at 4kHz (60kbps)
 - 15.36MHz
 - Impairments bring this down to 1.5Mbps to 9Mbps
xDSL
- High data rate DSL
- Single line DSL
- Very high data rate DSL

Required Reading
- Stallings chapter 8
- Web sites on
 - ADSL
 - SONET